Clique-width: On the Price of Generality

Fedor V. Fomin Petr A. Golovach Daniel Lokshtanov Saket Saurabh
Department of Informatics, University of Bergen, N-5020 Bergen, Norway
\{fedor.fomin|petr.golovach|daniello|saket.saurabh\}@ii.uib.no

Abstract

Many hard problems can be solved efficiently when the input is restricted to graphs of bounded treewidth. By the celebrated result of Courcelle, every decision problem expressible in monadic second order logic is fixed parameter tractable when parameterized by the treewidth of the input graph. Moreover, for every fixed \(k \geq 0 \), such problems can be solved in linear time on graphs of treewidth at most \(k \). In particular, this implies that basic problems like DOMINATING SET, GRAPH COLORING, CLIQUE, and HAMILTONIAN CYCLE are solvable in linear time on graphs of bounded treewidth.

A significant amount of research in graph algorithms has been devoted to extending this result to larger classes of graphs. It was shown that some of the algorithmic meta-theorems for treewidth can be carried over to graphs of bounded clique-width. Courcelle, Makowsky, and Rotics proved that the analogue of Courcelle’s result holds for graphs of bounded clique-width when the logical formulas do not use edge set quantifications. Despite of its generality, this does not resolve the parameterized complexity of many basic problems concerning edge subsets (like EDGE DOMINATING SET), vertex partitioning (like GRAPH COLORING), or global connectivity (like HAMILTONIAN CYCLE). There are various algorithms solving some of these problems in polynomial time on graphs of clique-width at most \(k \). However, these are not fixed parameter tractable algorithms and have typical running times \(O(n^{f(k)}) \), where \(n \) is the input length and \(f \) is some function.

It was an open problem, explicitly mentioned in several papers, whether any of these problems is fixed parameter tractable when parameterized by the clique-width, i.e. solvable in time \(O(g(k) \cdot n^c) \), for some function \(g \) and a constant \(c \) not depending on \(k \). In this paper we resolve this problem by showing that EDGE DOMINATING SET, HAMILTONIAN CYCLE, and GRAPH COLORING are \(W[1] \)-hard parameterized by clique-width. This shows that the running time \(O(n^{f(k)}) \) of many clique-width based algorithms is essentially the best we can hope for (up to a widely believed assumption from parameterized complexity, namely \(FPT \neq W[1] \))—the price we pay for generality.

1 Introduction

One of the most frequent approaches for solving graph problems is based on decomposition methods. Tree decomposition, and the corresponding parameter, the treewidth of a graph, is one the most commonly used concepts. We refer to the surveys of Bodlaender [3] and Hlinený et al. [19] for further references on treewidth and related parameters. In the quest for alternate graph decompositions that can be applied to broader classes than graphs of bounded treewidth and still enjoy good algorithmic properties, Courcelle and Olariu [9] introduced the clique-width of a graph. Clique-width can be seen as a generalization of treewidth, in a sense that graphs of bounded treewidth also have bounded clique-width [5].

In recent years, clique-width has received much attention. Courcelle, Habib, Lanignet, Reed, and Rotics [4] show that graphs of clique-width at most \(3 \) can be recognized in polynomial time. Fellows, Rosamond, Rotics, and Szeider [15] settled a long standing open problem by showing that computing clique-width is NP-hard. Oum and Seymour [24] describe an algorithm that, for any fixed \(k \), runs in time \(O(|V(G)|^3 \log |V(G)|) \) and computes \((2^{3k+2} - 1) \)-expressions for a graph \(G \) of clique-width at most \(k \). Recently Oum [20] improved this result by providing an algorithm computing \((8^k-1)\)-expressions in time \(O(|V(G)|^3) \). It is also worth to mention here the related graph parameters NLC-width introduced by Wanke [27] and rank-width introduced by Seymour and Oum [24].

By the seminal result of Courcelle [6] (see also [1]), every decision problem on graphs expressible in monadic second order logic is fixed parameter tractable when parameterized by the treewidth of the input graph. For problems expressible in monadic second order logic with logical formulas that do not use edge set quantifications (so-called \(MS_1 \)-logic), it is possible to extend the meta theorem of Courcelle to graphs of bounded clique-width. As it was shown by Courcelle, Makowsky, and Rotics [7], all problems expressible in \(MS_1 \)-logic are fixed parameter tractable when parameterized by the clique-width of a graph.

There are many problems expressible in monadic second order logic that cannot be expressed in \(MS_1 \)-logic. The most natural, are perhaps, GRAPH COLORING, HAMILTONIAN CYCLE, and EDGE DOMINATING

825 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.
It is known that these problems can be solved in polynomial time on graphs of bounded clique-width and a significant amount of the literature is devoted to algorithms for these problems and their generalizations. Polynomial time algorithms for graph coloring and its different generalizations including computations of chromatic and Tutte polynomials of graphs of bounded clique-width are given in [17, 16, 18, 21, 22, 23, 25, 26]. Polynomial time algorithms for Hamiltonian cycle are given in [21, 22] (in terms of NLC-width, which is a notion related to clique-width). Algorithms for edge dominating set are given in [21, 22]. The running time of all these algorithms on an n-vertex graph of clique-width at most k is $O(n^{f(k)})$, where f is some function of k. Since these problems are solvable in time $O(g(k) \cdot n^c)$, when the treewidth of the graph is at most k, the most natural question to ask is whether a similar behavior can be expected on graphs of bounded clique-width. The question on the existence of fixed parameter tractable algorithms (with clique-width being the parameter) for all these problems (or their generalizations) was asked by Gerber and Kohler [16], Kohler and Rotics [21, 22], Makowsky, Rotics, Averbouch, Kotek, and Godlin [23, 18].

Our results. In this paper we show that edge dominating set, Hamiltonian cycle, and graph coloring are $W[1]$-hard parameterized by clique-width, even when the expression tree is given. This resolves open questions raised in [16, 18, 21, 22, 23]. These are the first results distinguishing between treewidth and clique-width parameterizations.

2 Definitions and Preliminary results

We only consider finite undirected graphs without loops or multiple edges. The vertex set of a graph G is denoted by $V(G)$ and its edge set by $E(G)$. For $v \in V(G)$, by $E(v)$ we mean the set of edges incident to v. We denote by $tw(G)$ the treewidth of the graph.

Parameterized Complexity: Parameterized complexity is a two dimensional framework for studying the computational complexity of a problem. (We refer to the book of Downey and Fellows [11] for an introduction to parameterized complexity.) One dimension is the input size n and another one is a parameter k. A problem is called fixed parameter tractable (FPT) if it can be solved in time $f(k) \cdot n^c$, where f is a computable function only depending on k and c is some constant. The basic complexity class for fixed parameter intractability is $W[1]$. To show that a problem is $W[1]$-hard, one needs to exhibit a parameterized reduction from a known $W[1]$-hard problem. Now we define the notion of parameterized reduction.

Definition 2.1. Let A, B be parameterized problems. We say that A is (uniformly many:1) reducible to B if there is an algorithm Φ which transforms (x, k) into $(x', g(k))$ in time $f(k)|x|^\alpha$, where $f, g : N \rightarrow N$ are arbitrary functions and α is a constant independent of k, so that $(x, k) \in A$ if and only if $(x', g(k)) \in B$.

Clique-width: Let G be a graph, and k be a positive integer. A k-graph is a graph whose vertices are labeled by integers from $\{1, 2, \ldots, k\}$. We call the k-graph consisting of exactly one vertex labeled by some integer from $\{1, 2, \ldots, k\}$ an initial k-graph. The cliquewidth $cwd(G)$ is the smallest integer k such that G can be constructed by means of repeated application of the following four operations: (1) introduce: construction of an initial k-graph labeled by i (denoted by $i(v)$), (2) disjoint union (denoted by \oplus), (3) relabel: changing all labels i to j (denoted by $\rho_{i \rightarrow j}$) and (4) join: connecting all vertices labeled by i with all vertices labeled by j by edges (denoted by $\eta_{i,j}$).

An expression tree of a graph G is a rooted tree T of the following form:

- The nodes of T are of four types i, \oplus, η and ρ.
- Introduce nodes $i(v)$ are leaves of T, corresponding to initial k-graphs with vertices v, which are labeled i.
- A union node \oplus stands for a disjoint union of graphs associated with its children.
- A relabel node $\rho_{i \rightarrow j}$ has one child and is associated with the k-graph, which is the result of relabeling operation for the graph corresponding to the child.
- A join node $\eta_{i,j}$ has one child and is associated with the k-graph, which is the result of join operation for the graph corresponding to the child.
- The graph G is isomorphic to the graph associated with the root of T (with all labels removed).

The width of the tree T is the number of different labels appearing in T. If a graph G has $cwd(G) \leq k$ then it is possible to construct a rooted expression tree T with width k of G.

A well-known fact is that if the treewidth of a graph is bounded then its cliquewidth also is bounded. On the other hand, complete graphs have clique-width 2 and unbounded treewidth.

Theorem 2.1. ([5]) If graph G has treewidth at most t then $cwd(G)$ is at most $k = 3 \cdot 2^{t-1}$. Moreover, an expression tree for G of width at most k can be constructed.
in \(\text{FPT} \) time (with treewidth being the parameter) from the tree decomposition of \(G\).

The second claim in Theorem 2.1 is not given explicitly in [5]. However it can be shown since the upper bound proof in [5] is constructive (see also [8, 13]). Note that if a graph has bounded treewidth then the corresponding tree decomposition can be constructed in linear time [2].

3 Graph Coloring — Chromatic Number

In this section, we prove that \textsc{Graph Coloring} is \(W[1]\)-hard parameterized by clique-width.

\textsc{Graph Coloring (or Chromatic Number)}: The chromatic number of a graph \(G = (V(G), E(G))\) is the smallest number of colors \(\chi(G)\) needed to color the vertices of \(G\) so that no two adjacent vertices share the same color.

Our reduction is from the \textsc{Equitable Coloring} problem parameterized by the number \(r\) of colors used, and the treewidth of the input graph. In the \textsc{Equitable Coloring} problem one is given a graph \(G\) and integer \(r\) and asked whether \(G\) can be properly \(r\)-colored in such a way that the number of vertices in any two color classes differs by at most 1. Notice that if \(n\) is divisible by \(r\) this implies that all color classes must contain the same number of vertices. In our reduction we will assume that in the instance we reduce from, \(n\) is divisible by \(r\). For a justification of this assumption, if \(r\) does not divide \(n\) we can add a clique of size \(n + r - \lfloor \frac{n}{r} \rfloor r\) to \(G\). We reduce from the exact version of \textsc{Equitable Coloring}, that is, the version where we are looking for an equitable coloring of \(G\) with exactly \(r\) colors.

Theorem 3.1. \((14)\) \textsc{Equitable Coloring} is \(W[1]\)-hard parameterized by the treewidth \(t\) of the input graph and the number of colors \(r\).

Construction: On input \((G, r)\) to \textsc{Equitable Coloring}, we construct an instance \((G', r')\) of \textsc{Graph Coloring} as follows. We start with a copy of \(G\) and let \(r' = r + nr\). We now add a clique \(P\) of size \(r'\) to \(G'\). The clique \(P\) will function as a palette in our reduction, as we have to use all \(r'\) available colors to properly color it. We partition \(P\) into \(r + 1\) parts as follows, \(P = P^M \cup P_1 \cup P_2 \cdots \cup P_r\), where \(P^M\) has size \(r\) and \(P_i\) has size \(n\) for every \(i\). We call \(P^M\) the main palette, and denote the vertices in \(P^M\) by \(p_i\) for \(1 \leq i \leq r\). We add edges between every vertex of \(P \setminus P^M\) and every vertex of the copy of \(G\). For each vertex \(u \in V(G)\) we assign a vertex \(uP_i \in P_i\) for every \(i\). Now, for every \(1 \leq i \leq r\) we add a set \(S_i\) of vertices. For each vertex \(u \in V(G)\) we make a vertex \(uS_i\) in \(S_i\) for every \(1 \leq i \leq r\), and make \(uS_i\) adjacent to \(u\) and the entire palette \(P\) except for \(uP_i\) and \(p_i\). We conclude the construction by adding a clique \(C_i\) of \(n - \frac{1}{r}\) vertices and making every vertex of \(C_i\) adjacent to all of the vertices of \(S_i\) and the entire palette except for \(P_i\). See Figure 1 for an illustration.

Lemma 3.1. If \(G\) has an equitable \(r\)-coloring \(\phi\) then \(G'\) has an \(r'\)-coloring \(\psi\).

Proof. We construct a coloring \(\phi\) of \(G'\) as follows. The coloring \(\phi\) colors the copy of \(G\) in \(G'\) in the same way that \(\psi\) colors \(G\). We color the palette, assigning a unique color to each vertex and making sure that the main palette \(P^M\) is colored using the same colors that are used to color the vertices of \(G\). For every vertex \(uS_i\), we color \(uS_i\) with \(\phi(p_i)\) if \(\phi(u) \neq \phi(p_i)\) and with \(\phi(uP_i)\) if \(\phi(u) = \phi(p_i)\). We color every vertex of \(C_i\) with some color from \(P_i\) (a color used to color a vertex of \(P_i\)). To do this we need \(n - \frac{1}{r}\) different colors from \(P_i\). Since exactly \(n/r\) vertices of \(G\) are colored with \(\phi(p_i)\), exactly \(n - \frac{1}{r}\) of \(S_i\) are colored with \(\phi(p_i)\) and thus \(n/r\) vertices of \(S_i\) are colored with colors of \(P_i\). Hence there are \(n - \frac{1}{r}\) colors of \(P_i\) available to color \(C_i\). Thus, \(\phi\) is a proper \(r'\)-coloring of \(G\) concluding the proof.

Lemma 3.2. If \(G'\) has an \(r'\)-coloring \(\phi\) then \(G\) has an equitable \(r\)-coloring \(\psi\).

Proof. We prove that the restriction of \(\phi\) to the copy of \(G\) in \(G'\) in fact is an equitable \(r\)-coloring of \(G\). Since \(\phi\) can only use the colors of \(P^M\), \(\phi\) is a proper \(r\)-coloring of \(G\).
G. It remains to prove that for any i between 1 and r, at most n/r vertices of G are colored with ϕ(p_i). Suppose for contradiction that there is an i such that more than n/r vertices of G are colored with ϕ(p_i). Then there are more than n/r vertices of S_i that are colored with colors of P_i. Since each such vertex must take a different color from P_i, there are less than n−1/r different colors of P_i available to color the vertices of C_i. However, since C_i is a clique on n−1/r vertices that must be colored with colors of P_i, this is a contradiction. □

Lemma 3.3. If the treewidth of G is t, then the cliquewidth of G' is at most k = 3 ⋅ 2^{t−1} + 7t + 3. Furthermore, an expression tree of width k for G' can be computed in FPT time.

Proof. By Theorem 2.1 we can compute an expression tree for G of width at most 3 ⋅ 2^{t−1} in FPT time. Our strategy is as follows. We first show how to modify the expression tree to give a width k expression tree for G' \setminus (P^M \cup \bigcup_{i=1}^r C_i). Then we change this tree into an expression tree for G'. In order to give an expression tree for G' we introduce the following extra labels.

- For every 1 ≤ i ≤ r the labels α_i, β^L_i and β^R_i for vertices in P_i.
- For every 1 ≤ i ≤ r the labels β_i, γ^L_i and γ^R_i for vertices in S_i.
- For every 1 ≤ i ≤ r the label ζ_i for vertices in C_i.
- A “work” label γ^W and a label γ^M for P_M.

In the expression tree for G, we replace every introduce-node i(v) with a small expression tree T_i(v). In T_i(v), the vertex v is introduced with label γ^W and the vertices v_p, v_p', v_p, v_p, v_S, v_S, v_S are introduced with labels α_i, γ^L_i and β_i, γ^R_i respectively. Also, γ^W joins to β_i, γ^R_i and for every p, β_p is joined with every label in \{α_q : q ≠ p\}. Also, for every p ≠ q, α_p is joined with α_q. Finally, γ^W is relabelled to i.

Now, for every union node in the expression tree (not the union nodes inside the T_i's) we add extra vertices on the edges incident to this node. On the edge from the node to its left child, we add nodes that relabel α_p to α_p^L and β_p to β_p^R for every p. Similarly, on the edge from the union node to its right child, we add nodes that relabel α_p to α_p^R and β_p to β_p^L for every p. Finally, on the edge from the union node to its parent we add nodes that first join every α_p to every β_q^R and α_q, join every α_p^L with every β_q, then relabel every α_p^L and α_p to α_p and every γ^L_i and γ^R_i to β_p. To conclude the construction of G' \setminus (P^M \cup \bigcup_{i=1}^r C_i) we need to add some extra nodes above the root of the expression tree. We add the edges between P \setminus P^M and G by joining every α_p with all labels used for constructing G.

We now need to add the construction of P^M and \bigcup_{i=1}^r C_i to our expression tree. We start by making C_p for every p between 1 and r. For every p we add a clique on n−1/r vertices labelled ζ_p. Every ζ_p is joined to β_p and for every pair p ≠ q, ζ_p is joined with α_q.

Finally, we add the construction of P^M. For every i, we introduce the vertex p_i with label γ^W, join γ^W to α_j and ζ_j for every j, γ^W with β_j for every j ≠ i and finally join γ^W to γ^M and relabel γ^W to γ^M. This concludes the construction of G'. Notice that this expression tree for G' uses k = 3 ⋅ 2^{t−1} + 9t + 3 labels. □

Lemmas 3.1, 3.2 and 3.3 together imply the following result.

Theorem 3.2. The Graph Coloring problem is W[1]-hard when parameterized by clique-width. Moreover, this problem remains W[1]-hard even if the expression tree is given.

4 Edge Dominating Set

In this section, we show that Edge Dominating Set problem defined as below is W[1]-hard parameterized by clique-width.

Edge Dominating Set: Given a graph G = (V, E), find a minimum set of edges X ⊆ E(G) such that every edge of G is either included in X or it is adjacent to at least one edge of X. The set X is called an edge dominating set of G.

Our reduction is from a variant of Capacitated Dominating Set problem.

4.1 Exact Saturated Capacitated Dominating Set: A capacitated graph is a pair (G, c) where G is a graph and c: V(G) → N is a capacity function such that 1 ≤ c(v) ≤ deg(v) for every vertex v ∈ V(G) (sometimes we simply say that G is a capacitated graph if the capacity function is clear from the context). A set S ⊆ V(G) is called a capacitated dominating set if there is a domination mapping f: V(G) \setminus S → S which maps every vertex in (V(G) \setminus S) to one of its neighbors such that the total number of vertices mapped by f to any vertex v ∈ S does not exceed its capacity c(v). We say that for a vertex u ∈ S, vertices in the set f⁻¹(u) are dominated by u. The Capacitated Dominating Set problem is formulated as follows: given a capacitated graph (G, c) and a positive integer k, determine whether there exists a capacitated dominating set S for G containing at most
k vertices. It was proved by Dom et al. [10] that this problem is $W[1]$-hard when parameterized by treewidth.

Theorem 4.1. (10) Capacitated Dominating Set is $W[1]$-hard parameterized by the treewidth t of the input graph and the solution size k.

For the intractability proof of Edge Dominating Set, we need a special variant of Capacitated Dominating Set problem which we call Exact Saturated Capacitated Dominating Set. Given a capacitated dominating set S, a $v \in S$ is called saturated if the corresponding domination mapping f maps $c(v)$ vertices to v, that is, $|f^{-1}(v)| = c(v)$. A capacitated dominating set $S \subseteq V(G)$ is called saturated if there is a domination mapping f which saturates all vertices of S. In Exact Saturated Capacitated Dominating Set a capacitated graph (G, c) and a positive integer k is given. The question is whether G has a saturated capacitated dominating set S with exactly k vertices.

Lemma 4.1. The Exact Saturated Capacitated Dominating Set problem is $W[1]$-hard when parameterized by clique-width. Moreover, this problem remains $W[1]$-hard even if the expression tree is given.

Proof. We reduce from a exact version of the Capacitated Dominating Set problem parameterized by the treewidth of the input graph. In the exact version of the problem, the question is to determine whether there exists a capacitated dominating set of size exactly k. From the $W[1]$-hardness of Capacitated Dominating Set, it easily follows that even the exact version remains $W[1]$-hard for graphs of bounded treewidth.

Let r be a positive integer and $H_r(u)$ denote a capacitated graph rooted at vertex u. The graph $H_r(u)$ is constructed as follows. Its vertex set is given by $\{u, v, x_1, \ldots, x_r, y_1, \ldots, y_r\}$ and the edges are given by making u adjacent to all vertices x_i, making v adjacent to all vertices y_i, and finally adding edges $x_i y_j$, $1 \leq i, j \leq r$. We define the capacity function as follows: $c(v) = r - 1$, $c(x_i) = r + 1$ and $c(y_i) = i$ for all $i \in \{1, 2, \ldots, r\}$ (note that the capacity function is not defined for the root u).

Let (G, c) be a capacitated graph, $u \in V(G)$, and $r \geq \max\{3, c(u) + 1\}$. We add a copy of $H_r(u)$ to G with u being its root. Let G' be the resulting capacitated graph. We now prove two auxiliary claims about the graph G'.

Claim 1. Any capacitated dominating set S with the domination mapping f in G can be extended to the capacitated dominating set in G' in such a way that all vertices of $H_r(u)$ are saturated.

Proof. Let S be a capacitated dominating set in G with the domination mapping f. We define s to be $|f^{-1}(u)|$ if $u \in S$ and $c(u)$ otherwise. Let $S' = S \cup \{v, y_j\}$ where $j = r - c(u) + s$. The mapping f is extended as follows: $f(x_i) = u$ for $1 \leq i \leq c(u) - s$, $f(x_i) = y_i$ for $i > c(u) - s$, and $f(y_i) = v$ for all $i \neq j$. It can be easily seen that this is the claimed extension.

Claim 2. Every saturated capacitated dominating set in G' contains exactly two vertices from $V(H_r(u)) \setminus \{u\}$.

Proof. Let S' be a saturated capacitated dominating set in G' and f be its corresponding domination mapping. We first show that S' does not contain any x_i's. Suppose that some vertex x_i is included in S'. Then because of capacity constraint that $c(x_i) = r + 1$, it implies that $y_1, y_2, \ldots, y_r \notin S'$ and $f(y_1) = x_i$ for all these vertices. Therefore there is no vertex in S' but clearly this vertex can not be saturated. Hence, $x_1, x_2, \ldots, x_r \notin S'$. Now we show that v must be in S'. Assume to the contrary that $v \notin S'$. Then $y_1, y_2, \ldots, y_r \subseteq S'$ as they need to be dominated. But these vertices can not be saturated since $\sum_{i=1}^r c(y_i) = 1 + \ldots + r = \frac{r(r+1)}{2} > r + 1$. This means that $v \in S'$. The capacity of v is $r - 1$, hence at most one vertex y_i can be included in S'. On the other hand since $c(u) < r$, there exists at least one vertex x_j such that $f(x_j) \neq u$. Hence to dominate this vertex we need a vertex $y_i \in S'$. This completes the proof.

Now we are ready to complete the proof of the lemma. Let (G, c) be a capacitated graph with the vertex set $\{u_1, u_2, \ldots, u_n\}$, $r = \max\{c(v) : v \in V(G)\} + 2$. For every vertex u_i, we add a copy of $H_r(u_i)$ to G with u_i being its root. Let the resulting capacitated graph be denoted by H. By applying Claims 1 and 2 we conclude that G has a capacitated dominating set of the size k if and only if H has an exact saturated dominating set of the size $k + 2n$.

It remains to prove that if the treewidth of G is bounded then the clique-width of H is bounded. Let $tw(G) \leq t$. The by Theorem 2.1 $cwd(G) \leq 3 \cdot 2^{t+1}$ and it is possible to construct an expression tree of width at most $w = 3 \cdot 2^t - 1$ in FPT time. We prove that $cwd(H) \leq w + 4$. Assume that the construction of the labeled graph G uses labels from the set $\{\alpha_1, \ldots, \alpha_w\}$. To construct H from G we use additional labels $\{\beta_1, \beta_2, \beta_3, \beta_4\}$.

When a vertex u having a label α_i is introduced we do the following sequence of operations: $\alpha_j(u)$, $\beta_1(x_i)$ and $\beta_2(y_i)$ for all $i \in \{1, \ldots, r\}$, and $\beta_3(v)$. After we apply following operations: $\eta_1, \eta_2, \eta_3, \eta_4, \eta_5, \eta_6$.
performed. Join, union and relabel operations with labels \(\{a_1, \ldots, a_n\} \) are done as it is done for the expression tree of \(G \). This concludes the construction of expression tree for \(H \).

4.2 Intractability of Edge Dominating Set

Problem: In this section we show that Edge Dominating Set is \(W[1] \)-hard parameterized by clique-width by giving a reduction from Exact Saturated Dominating Set. We start with descriptions of auxiliary gadgets.

Construction: We start with descriptions of auxiliary gadgets. Let \(s \leq t \) be positive integers. We construct a graph \(F_{s,t} \) with the vertex set \(\{x_1, \ldots, x_s, y_1, \ldots, y_s, z_1, \ldots, z_t\} \) and edges \(x_iy_i, 1 \leq i \leq s \) and \(y_iz_j, 1 \leq i \leq s \) and \(1 \leq j \leq t \). Basically we have complete bipartite graph between \(y_i \)’s and \(z_j \)’s with pendant vertices attached to \(y_i \)’s. The vertices \(z_1, z_2, \ldots, z_t \) are called roots of \(F_{s,t} \). This graph has the following property.

Lemma 4.2. Any set of \(s \) edges incident to vertices \(y_1, \ldots, y_s \) forms an edge dominating set in \(F_{s,t} \). Furthermore, let \(G \) be a graph obtained by the union of \(F_{s,t} \) with some other graph \(H \) such that \(V(F_{s,t}) \cap V(H) = \{z_1, \ldots, z_t\} \). Then every edge dominating set of \(G \) contains at least \(s \) edges from \(F_{s,t} \).

The proof of the lemma follows from the fact that every edge dominating set includes at least one edge from \(E(y_i) \) for \(i \in \{1, \ldots, s\} \).

Now we describe our reduction. Let \((G, c) \) be a capacitated graph with the vertex set \(\{u_1, \ldots, u_n\} \), and \(k \) be a positive integer. For every vertex \(u_i \), the set \(U_i \) with \(c(u_i) \) vertices is introduced, and then vertex sets \(\{v_1, \ldots, v_n\} \) and \(\{w_1, \ldots, w_n\} \) are added. For every edge \(u_iv_j \in E(G) \), all vertices of \(U_i \) are joined with \(v_j \) and all vertices of \(U_j \) are joined with \(v_i \) by edges. Then every vertex \(v_i \) is joined to its counterpart \(w_i \) and to every vertex \(v_i \) we add one additional leaf (a pendant vertex). Now vertex sets \(\{a_1, \ldots, a_n\} \) and \(\{b_1, \ldots, b_n\} \) are constructed, and vertices \(a_i \) are made adjacent to all vertices of \(U_i \), \(v_i \), and \(b_i \). For every vertex \(b_i \), a set \(R_i \) of \(c(u_i) + 1 \) vertices is added and \(b_i \) is made adjacent to all the vertices in \(R_i \). Then we add to every vertex of \(R_1 \cup R_2 \cup \cdots \cup R_k \) a path of length two. Let \(X \) be the set of middle vertices of these paths. We denote the obtained graph by \(G' \) (see Fig. 2). Finally, we introduce three copies of \(F_{s,t} \):

- a copy of \(F_{n-k,n} \) with roots \(\{a_1, \ldots, a_n\} \),
- a copy of \(F_{k,n} \) with roots \(\{b_1, \ldots, b_n\} \), and a
- a copy of \(F_{n,r} \) where \(r = \sum_{i=1}^{n} c(u_i) \) with roots in \(X \).

Let this final resulting graph be \(H \).

Lemma 4.3. A graph \(G \) has an exact saturated dominating set of the size \(k \) if and only if \(H \) has an edge dominating set of cardinality at most \(2n + r \).

Proof. Let \(S \) be an exact saturated dominating set of the size \(k \) in \(G \) and \(f \) be its corresponding domination mapping. For convenience (without loss of a generality) we assume that \(S = \{u_1, \ldots, u_k\} \). We construct the edge dominating set as follows. First we select an edge emanating from every vertex in the set \(\{v_1, \ldots, v_k\} \). For every vertex \(v_i, 1 \leq i \leq k \), the edge \(v_iw_i \) is selected. Now let us assume that \(k < i \leq n \) and \(f(u_i) = u_j \). We choose a vertex \(u \) in \(U_j \) which is not incident to already chosen edges and add the edge \(uv \) to our set. Notice that we always have such a choice of \(u \in U_j \) as \(c(u_j) = |U_j| \). We observe that these edges already dominates all the edges in the sets \(E(u_i), 1 \leq i \leq n \), and in sets \(E(u) \) for \(u \in U_1 \cup \cdots \cup U_k \cup \{w_1, \ldots, w_k\} \). Now we add \(n - k \) edges from \(F_{n-k,n} \) which are incident to vertices in \(\{a_{k+1}, \ldots, a_n\} \) and \(k \) edges from \(F_{k,n} \) which are incident to \(\{b_1, \ldots, b_k\} \). Then \(r - n \) matching edges joining vertices of \(R_k \cup \cdots \cup R_1 \) to the vertices of \(X \) are included in the set. Finally, we add \(n \) edges form \(F_{n,r} \) which are incident to vertices of \(X \) which are adjacent to vertices of \(R_1 \cup \cdots \cup R_k \). Since \(S \) is an exact capacitated dominating set, \(\sum_{i=1}^{n} (c(u_i) + 1) = n \), and from our description it is clear that the resulting set is an edge dominating set of size \(2n + r \) for \(H \).

We proceed to proving the other direction of the equivalence. Let \(L \) be an edge dominating set of cardinality at most \(2n + r \). The set \(L \) is forced to contain at least one edge from every \(E(v_i) \), at least \(n - k \) edges from \(F_{n-k,n} \), at least \(k \) edges from \(F_{k,n} \), and at least one edge from \(E(x) \) for all \(x \in X \) because of pendant edges. This implies that \(|L| = 2n + r \), and \(L \) contains exactly one edge from every \(E(v_i) \), exactly \(n - k \) edges from \(F_{n-k,n} \), exactly \(k \) edges from \(F_{k,n} \), and exactly one edge from \(E(x) \) for all \(x \in X \). Every edge \(a_i b_i \) needs to be dominated by some edge of \(L \), in particular it must be dominated from either an edge of \(F_{n-k,n} \) or \(F_{k,n} \). Let \(I = \)

830 Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
\(\{i : a_i \text{ is incident to an edge from } L \cap E(F_{n-k,n})\} \) and
\(J = \{j : b_j \text{ is incident to an edge from } L \cap E(F_{k,n})\}. \)

The above constraints on the set \(L \) implies that \(|I| = n - k, |J| = k\), and these sets form a partition of \(\{1, \ldots, n\} \).

The edges which join vertices \(b_i \) and \(R_i \) for \(i \in I \) are not dominated by edges from \(L \cap E(F_{k,n}) \). Hence to dominate these edges we need at least \(\sum_{i \in I} |R_i| \) edges which connect sets \(R_i \) and \(X \). Since at least \(n \) edges of \(F_{n,r} \) are included in \(L \), we have that \(\sum_{i \in I} |R_i| \leq r - n \) and \(\sum_{j \in J} |R_j| = r - \sum_{i \in I} |R_i| \geq r - (r - n) \geq n. \)

Let \(S = \{u_j : j \in J\} \). Clearly, \(|S| = k\). Now we show that \(S \) is a saturated capacitated dominating set.

For \(j \in J \), edges which join a vertex \(a_j \) to \(U_j \) and \(w_j \) are not dominated by edges from \(L \cap E(F_{n-k,k}) \), and hence they have to be dominated by edges from sets \(E(v_i) \). Since \(n \leq \sum_{j \in J} |R_j| = \sum_{j \in J} (|U_j| + 1) \), there are exactly \(n \) such edges, and every such edge must be dominated by exactly one edge from \(L \). An edge \(a_j w_j \) can only be dominated by edge \(v_j w_j \). We also know that \(L \cap E(v_i) \neq \emptyset \) for all \(i \in \{1, \ldots, n\} \) and hence for every \(v_i, i \notin J \), there is exactly one edge which joins it with some vertex \(u \in U_j \) for some \(j \in J \). Furthermore, all these edges are not adjacent, that is, they form a matching.

We define \(f(u_i) = u_j \) for \(i \notin J \). From our construction it follows that \(f \) is a domination mapping for \(S \) and \(S \) is an exact saturated dominating set in \(G \)

The next lemma shows that if the graph \(G \) we started with has bounded clique-width then \(H \) also has bounded clique-width.

Lemma 4.4. If \(\text{cwd}(G) \leq t \) then \(\text{cwd}(H) \leq 2t + 16 \), and an expression tree for \(H \) of width at most \(w = 2t + 16 \) can be constructed in a polynomial time from the expression tree for \(G \).

Proof. The graph \(G \) is of clique-width at most \(t \). Suppose that the expression tree for \(G \) uses \(t \)-labels \(\{a_1, \ldots, a_t\} \). To construct the expression tree for \(H \) we need following additional labels:

- Labels \(\beta_1, \ldots, \beta_t \) for the vertices in \(U_1, \ldots, U_n \).
- Labels \(\xi_1, \xi_2 \), and \(\xi_3 \) for attaching \(F_{n-k,n}, F_{k,n} \) and \(F_{n,r} \) respectively.
- Labels \(\gamma_1, \ldots, \gamma_9 \) for marking some vertices like \(w_1, \ldots, w_n \).
- Working labels \(\gamma_1, \ldots, \gamma_9 \).

When a vertex \(u_i \in V(G) \) labeled \(a_j \) is introduced, we perform following set of operations. First we introduce following vertices with some working labels: \(v_i \) with label \(\gamma_1 \), \(c(u_i) \) vertices of \(U_i \) with label \(\gamma_2 \), the vertex \(w_i \) with label \(\gamma_3 \), and the additional vertex (the leaf attached to \(v_i \)) with label \(\gamma_4 \). Now we join the vertex labelled with \(\gamma_1 \) to vertices labelled with \(\gamma_3 \) and \(\gamma_4 \) (basically joining \(v_i \) with \(w_i \) and its pendant leaf).

Finally, we relabel \(\gamma_4 \) to \(\xi_1 \) and \(\gamma_1 \) to \(\beta_j \). Now we introduce vertices \(a_i \) and \(b_i \) with labels \(\gamma_5 \) and \(\gamma_6 \) respectively. Then we join the vertex labelled \(\gamma_4 \) (\(a_i \)) with all the vertices labelled with \(\gamma_2 \), \(\gamma_3 \) and \(\gamma_6 \) (\(U_i, w_i, b_i \)). The join operation is followed by relabeling \(\gamma_3 \) to \(\beta_2 \), \(\gamma_2 \) to \(\alpha_j \) and \(\gamma_5 \) with \(\xi_1 \).

Now we want to make the vertices of \(R_i \) and the paths attached to it. To do so we perform following operations \(c(u_i) + 1 \) times: (a) introduce three nodes labelled with \(\gamma_7, \gamma_8 \) and \(\gamma_9 \) (b) join \(\gamma_7 \) with \(\gamma_8 \) with \(\gamma_9 \) and \(\gamma_8 \) with \(\gamma_7 \) (c) finally we relabel \(\xi_2, \xi_7 \) to \(\xi_3, \xi_8 \) to \(\xi_4 \). We omit the union operations from the description and assume that if some vertex is introduced then this operation is performed.

If in the expression tree of \(G \), we have join operation between two labels say \(\alpha_j \) and \(\alpha_j \) then we simulate this by applying join operations between \(\alpha_j \) and \(\beta_j \) and \(\alpha_j \) and \(\beta_j \). The relabel operation in the expression tree of \(G \), that is, relabel \(\alpha_j \) to \(\alpha_j \) is replaced by relabel \(\alpha_j \) to \(\alpha_j \) and relabel \(\beta_j \) to \(\beta_j \). Union operations in the expression tree is done as before.

Finally to complete the expression tree for \(H \), we need to add \(F_{n-k,n}, F_{k,n} \) and \(F_{n,r} \). Notice that all the vertices in \(\{a_1, \ldots, a_n\}, \{b_1, \ldots, b_n\} \) and \(X \) are labelled \(\xi_1, \xi_2 \) and \(\xi_3 \) respectively. From here we can easily add \(F_{n-k,n}, F_{k,n} \) and \(F_{n,r} \) with root vertices \(\{a_1, \ldots, a_n\}, \{b_1, \ldots, b_n\} \) and \(X \) respectively by using working labels. This concludes the description for the expression tree for \(H \).

\(\square \)

Lemmas 4.3 and 4.4 together imply the following result.

Theorem 4.2. The Edge Dominating Set problem is \(\text{W}[1] \)-hard when parameterized by clique-width. Moreover, the problem remains \(\text{W}[1] \)-hard even if the expression tree is given.

5 Hamiltonian Cycle Problem

In this section we show that the HAMILTONIAN CYCLE problem is \(\text{W}[1] \)-hard for the graphs of bounded clique-width.

Hamiltonian Cycle: Given a graph \(G \), check whether there exists a cycle passing through every vertex of \(G \).

Our reduction is from the CAPACITATED DOMINATING SET problem described in Section 4.1 and shown to be \(\text{W}[1] \)-hard in Theorem 4.1.
Construction: We start with descriptions of auxiliary gadgets. We denote by L_1, the graph with the vertex set $\{x, y, z, a, b, c, d, e, f, g, h\}$ and the edge set $\{xa, ab, bc, cd, dy, bz, cz, cd, dy, se, ef, fb, ch, hg, gt\}$. Let P_1 be the path $xabcdy$, and $P_2 = xabcdy$. (See Figure 3.) We abstract a property of this graph in the following lemma.

Lemma 5.1. Let G be a Hamiltonian graph which contains L_1 as an induced subgraph. Furthermore, if all the edges of G which are not edges of L_1 are incident only to the vertices x, y, z, and t, then every Hamiltonian cycle in G includes the path P_1 or the path P_2 as a segment.

Our second auxiliary gadget is the graph L_2. This graph has $\{x, y, z, s, t, a, b, c, d, e, f, g, h\}$ as its vertex set. We first describe the following $\{xa, ab, bz, cz, cd, dy, se, ef, fb, ch, hg, gt\}$ in its edge set. Then x, y-path of length ten $xw_1 \ldots w_9 y$ is added, and edges $fw_3, w_1w_6, w_4w_9, wyh$ are included in the set of edges. Let $P = xabzcdy, R_1 = sefaxw_1w_2 \ldots w_9ydhgty, and R_2 = sefw_3w_2w_1w_6w_4w_9wyhgt$. (See Figure 3.) This graph has the following property.

![Figure 3: Graphs L_1 and L_2. Paths P_1, P_2, R_1, R_2 and P are shown by thick lines](image)

Lemma 5.2. Let G be a Hamiltonian graph which contains L_2 as an induced subgraph, and edges of G which are not edges of L_1 are incident only to the vertices x, y, z, s, t. Then every Hamiltonian cycle in G includes either the path R_1 or two paths P and R_2 as segments.

The lemma follows from the presence of degree 2 vertices in the graph L_2.

Now we are ready to describe our reduction. Let (G, c) be a capacitated graph with the vertex set $\{v_1, \ldots, v_n\}$, m edges, and let k be a positive integer. For each vertex v_i, four vertices $a_i, b_i, c_i, and v_i$ are introduced and the vertices b_i and c_i are joined by $c(v_i) + 1$ paths of length two. Let C_i denote the set of middle vertices of these paths, and $X_i = C_i \cup \{a_i, b_i, c_i\}$. Then a copy $L_1^{(i)}$ of the graph L_1 with $z = w_i$ is added and vertices x and y of this gadget are joined by edges to a_i and b_i respectively. By s_i and t_i we denote the vertices s and t of $L_1^{(i)}$. For every ordered pair $\{v_i, v_j\}$ such that $v_i, v_j \in E(G)$, a copy $L_2^{(i,j)}$ of L_2 is attached with $z = w_j$ and vertices x and y made adjacent to all the vertices of C_i. The vertices corresponding to s and t are called s_{ij} and t_{ij} in $L_2^{(i,j)}$. Furthermore, let x_{ij} and y_{ij} denote the vertices corresponding to x and y in $L_2^{(i,j)}$. The path corresponding to P in $L_1^{(i,j)}$ is called $P_i^{(i,j)}$. Similarly, the path corresponding to P or R_1 or R_2 are called $P_1^{(i,j)}$, $R_1^{(i,j)}$ and $R_2^{(i,j)}$ respectively in $L_2^{(i,j)}$. Denote the obtained graph by $G'(c)$.

In the next step we add two vertices g and h which are joined by $\sum_{i=1}^{n}(c(v_i) + 4) + n + 2m + 1$ paths of length two. Let Y be the set of middle vertices of these paths. All vertices s_i, t_i, s_{ij} and t_{ij} are joined by edges with all vertices of Y. For every vertex r such that $r \in X_i$ (recall $X_i = C_i \cup \{a_i, b_i, c_i\}, i \in \{1, \ldots, n\}$, a copy $L_i^{(i)}$ of L_1 with $z = r$ is attached and the vertices x, y of this gadget are joined to all vertices of Y. We let x_r and y_r denote the vertices corresponding to x and y in $L_1^{(i)}$. Similarly $P_i^{(i)}$ and $P_j^{(i)}$ denotes paths in $L_i^{(i)}$ corresponding to P_1 and P_2 respectively. Please refer to Figure 4 for an illustration.

![Figure 4: Graph $G'(c)$](image)

Finally we add $k+1$ vertices, namely $\{p_1, \ldots, p_{k+1}\}$, and make it adjacent to all the vertices $\{a_i, c_i: 1 \leq i \leq n\}$ and to g and h. Let this resultant graph be H. The construction of H can easily be done in time polynomial in n and m.

Lemma 5.3. A graph (G, c) has a capacitated dominating set of size at most k if and only if H has a Hamiltonian cycle.

Proof. Let S be a capacitated dominating set of size at most k in (G, c) with the corresponding dominating mapping f. Without loss of a generality we assume that $|S| = k$ and $S = \{v_1, \ldots, v_k\}$. The Hamiltonian cycle we are trying to construct is naturally divided into $k + 1$ parts by the vertices $\{p_1, \ldots, p_{k+1}\}$. We construct the Hamiltonian cycle starting from the vertex p_1. Assume that the part of the cycle up to the vertex p_i is already constructed. We show how to construct the part from p_i to p_{i+1}. We include the edge $p_i a_i$ in it. We add to the cycle the path $P_i^{(i)}$ and two edges, which join the endpoints of $P_i^{(i)}$ with a_i and b_i. Let
\(J = \{ j : f(v_j) = v_i \} \). If \(J = \emptyset \) then a \(b_i - c_i \)-path of length two which goes through one vertex of \(C_i \) is included in the cycle. Otherwise all paths \(P_j \) for \(j \in J \) are included in our cycle of width. We consider the paths \(P_j \) in the increasing order of indices in \(J \) and add them to our cycle. We take the first path say \(P_j^1 \) and attach \(x_{ij} \) and \(y_{ij} \) to a pair of vertices \(\{ j_1, j_2 \} \) in \(C_i \). Suppose iteratively we have included first \(i \geq 1 \) paths in \(J \), and the \(l \)th path is incident to some \(\{ j_l, j_{l+1} \} \) in \(C_i \), now we attach the \((l+1)\)th path by attaching \(x_{il} \) of this to \(j_{l+1} \) and \(y_{il} \) of this to \(j_{l+2} \), where \(j_{l+2} \) is a new vertex not incident to any previously included paths. We can always find such a vertex as \(|J| \leq c(v_i) = |C_i| - 1 \). Now we include the edge \(b_i j_1 \) and \(j_1 j_{l+1} c_i \). Finally we include the edge \(c_i p_{i+1} \).

When the vertex \(p_{k+1} \) is reached we move to the set \(Y \). Note that at this stage all vertices \(\{ w_1, \ldots, w_n \} \) are already included in our cycle. We start by including the edge \(p_{k+1} g \). We will add following segments to our cycle an connect them appropriately.

- For every \(L_i^1 \) we add the path \(R_i^1 \) to the cycle if \(P_i \) was not included to it, and include the path \(R_i^2 \) otherwise. The number of such paths is \(n \).

- Similarly, for every \(L_i^2 \), the path \(R_i^2 \) is added to the cycle if \(P_i \) was not included to it, else the path \(R_i^3 \) is added. Note that \(2m \) such paths are included to the cycle.

- For every vertex \(r \) such that \(r \in X_i \), for some \(i \in \{ 1, \ldots, n \} \), the path \(P_r^i \) is included in the cycle if \(r \) is already included in the constructed part of the cycle, else the path \(P_r^i \) is added. Clearly, we add \(\sum_{i=1}^n (c(v_i) + 4) \) paths.

Finally the total number of paths we will add is \(\sum_{i=1}^n (c(v_i) + 4) + n + 2m = |Y| - 1 \). We add the segments of the paths mentioned with the help of vertices in \(Y \), in the way we added the paths \(P_j^\ast \) with the help of vertices in \(C_i \). Let the end points of the resultant joined path be \(\{ q_1, q_2 \} \). Notice that (a) \(q_1, q_2 \in Y \) and (b) this path include all the vertices of \(Y \). Now we add edges \(gq_1, q_2 h \) and \(h p_i \). This completes the construction of the Hamiltonian cycle.

For the reverse direction of the proof, we assume that we have been given a Hamiltonian cycle in \(H \). Let \(S = \{ v_i | p_{ia}, a \in E(C), a \neq E(C), j \neq s, \text{ for some } j \in \{ 1, 2, \ldots, k + 1 \} \} \). We prove that \(S \) is a capacitated dominating set in \(G \) of cardinality at most \(k \). We first argue about the size of \(S \), clearly its size is upper bounded by \(k + 1 \). To argue that it is at most \(k \), it is enough to observe that by Lemmas 5.1 and 5.2 either \(p_j g \) or \(p_j h \) must be in \(E(C) \) for some \(j \in \{ 1, \ldots, k + 1 \} \).

Now we show that \(S \) is indeed a capacitated dominating set. Our proof is based on following observations.

- Every vertex \(w_j \), either appear in a vertex segment, that is, \(P_i \) or an edge segment, that is, \(P_j^\ast \) for some \(j \in \{ 1, \ldots, n \} \) in \(C \).

- If some \(P_j^\ast \) appear as a segment in \(C \), then from the gadgets \(L_i^1 \) and \(L_i^2 \) the paths \(P_j^1 \) and \(P_j^2 \) are part of \(C \). Hence the only way to include \(b_i \) in \(C \) is by using the edge incident to it from the gadget \(L_1 \).

This implies that from the gadget \(L_1 \) we use the path \(P \) and two edges, which join the endpoints of \(P \), with \(a_i \) and \(b_i \).

- By Lemma 5.1 the cycle contains the edge which joins \(a_i \) to some vertex in \(\{ p_1, \ldots, p_{k+1} \} \).

Now given \(v_j \in V(G) \setminus S \), for the domination function \(f \), we assign it to \(v_i \) for which \(P_i \) is segment in \(C \). Clearly \(v_j \in S \) as by above observation there exits a \(j \in \{ 1, 2, \ldots, k + 1 \} \) such that \(p_{ja}, a \in E(C), a \neq E(C) \) and \(j \neq s \). For every \(v_j \in S \), set \(f^{-1}(v_j) \) contains at most \(c(v_j) \) vertices as \(|C_j| = c(v_j) + 1 \). This concludes the proof. \(\square \)

The proof of the next lemma is similar in spirit to Lemmas 3.3 and 4.4 and has been omitted due to space restrictions.

Lemma 5.4. If \(tw(G) \leq t \) then \(cwd(H) \leq 9 \cdot 2^{\max\{2t, 24\}} + 12 \) and an expression tree for \(H \) of width at most \(w = 9 \cdot 2^{\max\{2t, 24\}} + 12 \) can be constructed in \(FPT \) time.

Lemmas 5.3 and 5.4 together imply the following result.

Theorem 5.1. The Hamiltonian Cycle problem is \(W[1] \)-hard when parameterized by clique-width. Moreover, this problem remains \(W[1] \)-hard even if the expression tree is given.

6 Conclusions

In this article, we settled the computational complexity of several important problems parameterized by the clique-width of the input graph. Our results show that the existing algorithms for Edge Dominating Set, Hamiltonian Cycle, and Graph Coloring in graphs of bounded clique-width essentially are the best one can hope for, unless an unlikely collapse in parameterized complexity occurs. The problems we prove \(W[1] \) hard parameterized by clique-width are expressible in monadic second order logic and thus can be solved in linear time in graphs of bounded tree-width. Therefore
our results illustrate the trade-off between expressive power and computational tractability. Finally, we leave the following as an open problem—what is the complexity of MAX CUT parameterized by the clique-width of the input graph?

Acknowledgement. The authors thank Mike Fellows for introducing us to the “dark art” of parameterized reductions.

References

