Introduction

- **Online Algorithms** are algorithms that need to make decisions without full knowledge of the input.
 - Full knowledge of the past but no or inexact knowledge of the future
 - High degree of uncertainly
- Evaluation: *competitive* to within a constant factor of the *optimum offline algorithm*
 - OPT: the algorithm that has perfect knowledge of the future

Outline

- Introduction to Online Algorithm
- Online Financial Problems
 - Ski Rental Problem
 - Bahncard Problem
 - Money Exchange
- Q&A?

Competitive Ratio

- For a given optimization problem input, \(I \), let \(OPT(I) \) be the optimum solution on input \(I \)
- For a given algorithm, \(ALG \), and input sequence, \(I \), let \(ALG(I) \) be the cost incurred be \(ALG \) on input \(I \)
- An online algorithm is said to be *c-competitive* if there is a constant \(k \) such that for all finite input sequences \(I \),
 \[
 ALG(I) \leq c \cdot OPT(I) + k
 \]

Financial problems
Ski-Rental, Bahncard, Money Exchange

Presented by Cheng Sin Ying (Vivying)
Email: cs_csyaa@stu.ust.hk
October 7, 2003
What is Ski-Rental Problem?

- A set of skis costs 50 (x) dollars per day to rent
- A set of skis costs 500 (kx) dollars to buy

Each day you decide whether to
- 1) rent skis or
- 2) buy skis

Question: What’s the best online algorithm for minimizing the money you spend?

Buy or Rent?

<table>
<thead>
<tr>
<th>Rent costs: $50</th>
<th>Buy costs: $500</th>
</tr>
</thead>
</table>

- 1st Request?
- 2nd Request?
- ...
- 5th Request?
- ...
- 9th Request?
- 10th Request?

Rent is Better....

Buy is Better....

Financial Problems

- Search problems
 - Search for jobs / employees
- Replacement problems
 - Equipment replacement
- Portfolio selection
 - Investment planning
- Leasing problems
 - Buy/Rent question

Checkpoint

- Introduction to Online Algorithm
- Ski-Rental Problem
 - Background and Problem Definition
 - Offline Analysis and different online algorithms
 - Performance of the optimal online algorithm
- Bahncard Problem
- Money Exchange
Analysis on Ski-Rental Problem

- **Case 1:** \(n \leq k \) (e.g. \(n=4 \))
 - Total rent cost: 200 \((nx)\)
 - Total buy cost: 500 \((kx)\)

- **Case 2:** \(n > k \) (e.g. \(n = 20 \))
 - Total rent cost: 1000 \((nx)\)
 - Total buy cost: 500 \((kx)\)

Offline optimum cost is \(\min\{nx, kx\} \)

Optimal General Online Algorithm

- **Rent for \((k-1)\) days and buy**
 - Case i) \(0 \leq n \leq k-1 \)
 - OPT is \(nx \) and ALG is also \(nx \)
 - the competitive ratio in this case is 1

 - Case ii) \(n \geq k \)
 - OPT is \(kx \) and ALG is also \((k-1)x + kx = (2k-1)x \)
 - the competitive ratio = \((2k-1)/k = (2-1/k) \).

 Conclusion: competitive ratio\(=\!(2-1/k)\)

SRP – Online Algorithm (I)

- **Buying on the first day**
 - Case i) \(n=1 \)
 - ALG is \(kx \) and OPT is \$x.\)
 - The competitive ratio equals \(k \).

 - Case ii) \(1 < n < k \)
 - ALG is \(kx \) and OPT is \(nx \).
 - The ratio will be gradually decrease from \(k \) to 1

 - Case iii) \(n \geq k \)
 - ALG is \(kx \) and OPT is also \$kx.
 - The ratio will be 1.

 Conclusion: competitive ratio equals to \(k \)
The Bahncard Problem

Generalization of Ski-Rental Problem
- Suppose the MTR company is introducing a new Bahncard card
 - $24 HK dollars
 - 50% discount for any travel
 - Valid for 1 month
- Let BP(C, β, T) denote the Bahncard problem
 - C is the Bahncard costs
 - Reduce the price p of any ticket to β p
 - The card is valid during time T
- MTR Bahncard MBP($24, 0.5, 1 month)

Why “k-1” is the best?

1. If rent for less than k-1 and buy, say k-2
 - The adversary choose n=k-1
 - OPT = $(k-1)x, ALG = $(k-2)x +kx
 - Competitive ratio = (2k-2)/(k-1) = 2

2. If rent for greater than k-1 and buy, say k
 - The adversary choose n=k+1
 - OPT = $kx, ALG = $kx + $kx
 - Competitive ratio = 2k/k = 2

Best Strategy

Checkpoint

- Introduction to Online Algorithm
- Ski Rental Problem
- Bahncard Problem
 - Background and Problem Definition
 - Offline analysis and Typical strategies
 - Lower Bound of Deterministic online algorithm
 - Better deterministic online algorithm
 - Randomized online algorithm
- Money Exchange
Problem Definition

Critical cost

\[C_{\text{crit}} = \frac{C}{1 - \beta} = \frac{24}{1 - 0.5} = 48 \]

Cheap or Expensive?
- Depends on partial cost: \(P^l(\sigma) < C_{\text{crit}} \)
- Cheap...

T-Cost (or T-Recent-Cost)
- How much spent recently:
 \[r^\sigma(t) = \sum_{i: T_i \in I} p_i \]
- Measure according to the partial cost

Regular T-Cost
- Only concern the cost of regular request:
 \[r^\sigma_A(t) = \sum_{i: \sigma_i \text{ is a regular request in } I} p_i \]

Checkpoint

- Introduction to Online Algorithm
- Ski Rental Problem
- BahnCard Problem
 - Background and Problem Definition
 - Offline analysis and Typical strategies
 - Lower Bound of Deterministic online algorithm
 - Better deterministic online algorithm
 - Randomized online algorithm
- Money Exchange

Problem Definition

- **A finite sequence of travel requests** \(\sigma = \sigma_1, \sigma_2, \ldots \)
 - \(\sigma_2: \{ \text{Day 2: From Choi Hung to Diamond Hill} \} \)
 - \(\sigma_3: \{ \text{Day 25: From Choi Hung to Airport} \} \)

- **Cost** on \(\sigma_i \)
 - \(C(\sigma_i) : \text{Cost of travel (From Diamond Hill to Choi Hung)} \)
 - \(C(\sigma_i) = 4 \) (without BahnCard)
 - \(C(\sigma_i) = 2 \) (with BahnCard)

Reduced request
- \(\beta p_i \) called Reduced request
- \(p_i \) otherwise called Regular request

Critical cost

\[C_{\text{crit}} = \frac{C}{1 - \beta} = \frac{24}{1 - 0.5} = 48 \]

Cheap or Expensive?
- Depends on partial cost: \(P^l(\sigma) < C_{\text{crit}} \)
- Cheap...

T-Cost (or T-Recent-Cost)
- How much spent recently:
 \[r^\sigma(t) = \sum_{i=1}^{T-1} p_i \]
- Measure according to the partial cost

Regular T-Cost
- Only concern the cost of regular request:
 \[r^\sigma_A(t) = \sum_{i: \sigma_i \text{ is a regular request in } I} p_i \]

B-Schedule
- the sequence of when to buy BahnCard (s) suggested by an algorithm \(A \)

T-Cost of A
- For whole travel period \(\Gamma \), total number of BahnCard:
 \[C_A(\sigma) = |\Gamma_A(\sigma)| + \sum_{i \geq 1} C_A(\sigma_i) \]

Partial costs during time interval \(I \)
- E.g. \(I = \text{(day 1 to day 2)} \):
 \[P^l(\sigma) = \sum_{i: i \in I} p_i \]
- Money spent by A on tickets during interval \(I \)
 - Excluding the BahnCard cost:
 \[C_A^l(\sigma) = \sum_{i: i \in I} C_A(\sigma_i) \]
Given n travel requests, we can compute an optimal B-schedule and its minimal cost in time $O(n)$.

Typical Online Algorithm

- **Buy-Never-Algorithm (NEVER)**
 - $1/\beta$-competitive
 - Optimal if $\beta=1$

- **Ticket-Office Algorithm (TOA)**
 - Buy Bahncard iff total cost at least $C_{\text{crit}} = \frac{C}{1-\beta}$
 - $1/\beta$-competitive
 - Can handle expensive request but not cheap request

Deterministic Lower Bound

- No deterministic online algorithm for $\text{BP}(C,\beta,T)$ can be better than $(2-\beta)$-competitive
 - Constant request of arbitrarily small constant during interval $[0,T)$
 - Let s be the accumulated cost (excluding current request)
 - Adversary stops request after buying Bahncard

Checkup
No deterministic online algorithm for BP(C,β,T) can be better than $(2-\beta)$-competitive.

$C_A(s) = s + C + \beta \varepsilon$

- $C + \beta (s + \varepsilon)^{+ s}$ if $s + \varepsilon \leq C_{crit}$
- $C + \beta (s + \varepsilon)^{+ s}$ if $s + \varepsilon \geq C_{crit}$

Competitive Ratio:
- $C_{OPT}(s) = \frac{C + s + B_p}{C + \beta (s + \varepsilon)^{+ s}}$ if $s + \varepsilon \leq C_{crit}$
- $C_{OPT}(s) = \frac{C + s + B_p}{C + \beta (s + \varepsilon)^{+ s}}$ if $s + \varepsilon \geq C_{crit}$

- min value: $s = C_{crit} - \varepsilon$

Better Online Algorithm (I)

Sum-Algorithm (SUM)

- Buy Bahncard at regular request (t, p) iff regular T-cost at time t is at least C_{crit} and SUM does not already have a Bahncard, i.e.

$$n_{SUM}^s(t) = \sum_{i: \sigma_i \text{ is a regular request in } I} p \geq C_{crit}$$

- This algorithm is $(2-\beta)$-Competitive for BP(C,β,T)

<table>
<thead>
<tr>
<th>s</th>
<th>C_{OPT}^s</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>s = 25</td>
</tr>
<tr>
<td>35</td>
<td>s = 35</td>
</tr>
<tr>
<td>40</td>
<td>s = 40</td>
</tr>
<tr>
<td>60</td>
<td>s = 60</td>
</tr>
</tbody>
</table>

1.5 – Competitive

Better Online Algorithm (II)

Optimistic-Sum-Algorithm (OSUM)

- Buy Bahncard at regular request (t, p) iff

$$p \geq \frac{C - s(1 - \beta)}{2 - (1 - \beta)}$$

where s is the regular T-cost at t.

$$s = \sum_{i=1}^{t-1} n_{SUM}^s(i)$$

- This algorithm is $(2-\beta)$-Competitive for BP(C,β,T)

<table>
<thead>
<tr>
<th>s</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>s = 25</td>
</tr>
<tr>
<td>35</td>
<td>s = 35</td>
</tr>
<tr>
<td>40</td>
<td>s = 40</td>
</tr>
<tr>
<td>60</td>
<td>s = 60</td>
</tr>
</tbody>
</table>

1.5 – Competitive
Money Exchange

- **Trading of Money**
 - 1-way trading
 - 2-way trading

- **Exchange rate sequence** $E = e_1, e_2, e_3, \ldots$
 - e_i is the exchange rate at i^{th} day, (i.e. $1 = ?yen$)

- **Question:** What's the best way for maximizing the exchange of money?

Statistical Adversary

- Generate worst case input sequences that satisfy *statistical properties*
- Money-exchange Rate $[m, M]$:
- Sequence of exchange rate:
 - n days
 - Optimal off-line return > known quantity n
 - (n, n)-adversary
 - $R_A(E)$ is the *return* of Algorithm A

Randomized Lower Bound

- Randomizing \Rightarrow improves the competitive ratio
- *No randomized online algorithm for BP(C, β, T) can be better than $e/(e-1+β)$-competitive*
- $R-SUM$ and $R-OSUM$ are $2/(1+β)$-competitive for $BP(C, β, T)$
 - Using probability $q=1/(1+β)$
- RAND and RAND2 is $e/(e-1+β)$-competitive

Checkpoint

- Introduction to Online Algorithm
- Ski-Rental Problem
- Bahncard Problem
- Money Exchange
 - Problem Definition
 - Statistical Adversary and offline analysis
 - Money-Making algorithm
 - Threat-based strategy
Threat-based strategy

- New modification by Eisuke Dannoura, Kouichi Sakurai (1998)

- Rule 1: at the end of the game, all remaining dollars are exchanged
- Rule 2: except at the end of the game, a purchase may be made only when the current rate is the highest yet seen
- Rule 3: Whenever the exchange rate reaches a new maximum, just enough may be converted as to ensure that a competitive ratio of \(r \) would be obtained if an adversary were to drop the exchange rate to \(m \) and keep it there for the rest of the game

\[p_{\text{1-way}} \] - competitive for 1-way trading

\[p_{\text{2-way}} \] - competitive for 2-way trading

- Not yet the optimal...

Offline algorithm analysis

- \(R_{\text{OPT}}(E) \)
 - Always convert all dollars to yen at local maxima in \(E \)
 - Always convert all yen to dollars at local minima, except at the last transaction

\[
\text{M=15} \quad \text{Return} = \left(\frac{e_2}{e_5}\right) \left(\frac{e_6}{e_7}\right) \left(\frac{e_8}{e_9}\right) = \left(\frac{e_2 e_3 e_4}{e_3 e_4 e_5}\right) \left(\frac{e_6}{e_7}\right) \left(\frac{e_8}{e_9}\right)
\]

Money-Making Algorithm

- An algorithm A is **money-making** if for any exchange rate sequence \(E \), with \(R_{\text{OPT}}(E) > 1 \), then \(R_A(E) > 1 \)
- Guarantee positive profit
- Threat-based algorithm

Reference

3. Anna R. Karlin, Claire Kenyon, Dana Randall: "Dynamic TCP acknowledgement and other stories about e/(e-1)". STOC 2001: 502-509

~ Thank You ~

Any Questions?